
Syntax Cheatsheet
We've worked very hard to make Reason look like JS while preserving OCaml's great
semantics & types. Hope you enjoy it!

let binding
JavaScript Reason

const x = 5; let x = 5;

var x = y; No equivalent (thankfully)
let x = 5; x = x + 1; let x = ref(5); x := x^ + 1;

String & Char
JavaScript Reason

"Hello world!" Same
'Hello world!' Strings must use "

Characters are strings 'a'

"hello " + "world" "hello " ++ "world"

"Uńĩçöðe" {js|Uńĩçöðe|js}

Boolean
JavaScript Reason

true, false true, false

!true Same

||, &&, <=, >=, <, > Same

a === b, a !== b Same

No deep equality (recursive compare) a == b, a != b

a == b No equality with implicit casting
(thankfully)

Number
JavaScript Reason
3 Same *
3.1415 Same
3 + 4 Same
3.0 + 4.5 3.0 +. 4.5

5 % 3 5 mod 3
* JS has no distinction between integer and float.

Syntax Cheatsheet Page 1 of 4 24 May 2018

Object/Record
JavaScript Reason

no static types type point = {x: int, mutable y: int}

{x: 30, y: 20} Same *
point.x Same
point.y = 30; Same
{...point, x: 30} Same
* This is the Reason spiritual equivalent; it doesn't mean it compiles to JS's object! To
compile to the latter, see https://reasonml.github.io/docs/en/object.html#tip-tricks.

Array
JavaScript Reason

[1, 2, 3] [|1, 2, 3|]

myArray[1] = 10 Same

[1, "Bob", true] * (1, "Bob", true)

No immutable list [1, 2, 3]
* We can simulate tuples in JavaScript with arrays, because JavaScript arrays can contain
multiple types of elements.

Null
JavaScript Reason

null, undefined None *

* Again, only a spiritual equivalent; Reason doesn't have nulls, nor null bugs! But it does
have an option type (https://reasonml.github.io/docs/en/newcomer-examples.html#using-
the-option-type) for when you actually need nullability.

Function
JavaScript Reason

arg => retVal (arg) => retVal

function named(arg) {...} let named = (arg) => ...

const f = function(arg) {...} let f = (arg) => ...

add(4, add(5, 6)) Same

Syntax Cheatsheet Page 2 of 4 24 May 2018

https://reasonml.github.io/docs/en/object.html#tip-tricks
https://reasonml.github.io/docs/en/newcomer-examples.html#using-the-option-type
https://reasonml.github.io/docs/en/newcomer-examples.html#using-the-option-type
https://reasonml.github.io/docs/en/newcomer-examples.html#using-the-option-type

Blocks
JavaScript Reason

const myFun = (x, y) => {
 const doubleX = x + x;
 const doubleY = y + y;
 return doubleX + doubleY
};

let myFun = (x, y) => {
 let doubleX = x + x;
 let doubleY = y + y;
 doubleX + doubleY
};

Currying
JavaScript Reason

let add = a => b => a + b let add = (a, b) => a + b
Both JavaScript and Reason support currying, but Reason currying is built-in and
optimized to avoid intermediate function allocation & calls, whenever possible.

If-else (Conditionals)
JavaScript Reason

if (a) {b} else {c} Same *
a ? b : c Same
switch switch but super-powered!**

* Reason conditionals are always expressions!
** https://reasonml.github.io/docs/en/pattern-matching.html

Destructuring
JavaScript Reason

const {a, b} = data let {a, b} = data

const [a, b] = data let [|a, b|] = data *

const {a: aa, b: bb} = data let {a: aa, b: bb} = data
* Gives good compiler warning that data might not be of length 2. Switch to pattern-

matching instead.

Syntax Cheatsheet Page 3 of 4 24 May 2018

https://reasonml.github.io/docs/en/pattern-matching.html
https://reasonml.github.io/docs/en/pattern-matching.html

Loop
JavaScript Reason

for (let i = 0; i <= 10; i++) {...} for (i in 0 to 10) {...}

for (let i = 10; i >= 0; i--) {...} for (i in 10 downto 0) {...}

while (true) {...} Same

JSX
JavaScript Reason

<Foo bar=1 baz="hi" onClick={bla} /> Same
<Foo bar=bar /> <Foo bar /> *

<input checked /> <input checked=true />

No children spread <Foo>...children</Foo>
* Argument punning!

Exception
JavaScript Reason

throw new SomeError(...) raise(SomeError(...))

try {a} catch (Err) {...} finally {...} try (a) { | Err => ...} *

* No finally.

Blocks
In Reason, "sequence expressions" are created with {} and evaluate to their last

statement. In JavaScript, this can be simulated via an immediately-invoked function
expression (since function bodies have their own local scope).

JavaScript Reason

let res = (function() {
 const x = 23;
 const y = 34;
 return x + y;
})();

let res = {
 let x = 23;
 let y = 34;
 x + y
};

Comments
JavaScript Reason

/* Comment */ Same
// Line comment Coming soon

Syntax Cheatsheet Page 4 of 4 24 May 2018

